1 引言
我國(guó)河流、湖泊眾多,伴隨經(jīng)濟(jì)的高速發(fā)展,人類活動(dòng)的增強(qiáng),河流、湖泊水質(zhì)污染問(wèn)題日益嚴(yán)重,已經(jīng)成為制約城市可持續(xù)發(fā)展的關(guān)鍵因素,因此有必要利用高新技術(shù)手段展開河流、湖泊水質(zhì)污染問(wèn)題研究,及時(shí)、快速的提供河流、湖泊的水質(zhì)狀況,保障人們正常的生產(chǎn)生活。
遙感技術(shù)的發(fā)展與進(jìn)步為河流、湖泊水體的監(jiān)測(cè)和研究開辟了新的途徑。目前,國(guó)內(nèi)外學(xué)者利用特定的遙感平臺(tái),構(gòu)建了針對(duì)特定水域的不同水質(zhì)參數(shù)的模型,并取得了一定的成果。在衛(wèi)星平臺(tái)上,Thiemann等用IRS-1C數(shù)據(jù)對(duì)德國(guó)梅克倫堡州湖泊群的水體葉綠素a進(jìn)行了反演,并結(jié)合卡爾森模型(TSI)評(píng)價(jià)了該地區(qū)水體富營(yíng)養(yǎng)化程度;柳晶輝等利用HJ-1衛(wèi)星多光譜數(shù)據(jù)監(jiān)測(cè)湖北武漢東湖藍(lán)藻爆發(fā)情況,研究表明利用HJ-1遙感數(shù)據(jù)可快速鑒別藍(lán)藻范圍及其程度,大氣校正突出了藍(lán)藻水體和其他地物光譜差異,EVI方法精度較高,可剔去水質(zhì)中泥沙等懸浮物的干擾,可作為城市湖泊藍(lán)藻變化檢測(cè)經(jīng)驗(yàn)?zāi)P?。在機(jī)載平臺(tái)上,F(xiàn)link等收集了瑞典兩個(gè)湖泊的 CASI 數(shù)據(jù),利用主成分分析法找出與葉綠素 a 濃度的相關(guān)好的波段,對(duì)其進(jìn)行分析并繪制了葉綠素濃度圖。Hakvoort等運(yùn)用機(jī)載成像高光譜數(shù)據(jù)對(duì)CDOM、Chl-a、TSS等水質(zhì)參數(shù)進(jìn)行監(jiān)測(cè);Olmanson等利用機(jī)載高光譜影像數(shù)據(jù)分析了明尼蘇達(dá)河和密西西比河交匯處、密西西比河和圣克羅伊河交匯處、明尼蘇達(dá)河和密西西比河交匯處附近的濁度葉綠素a分布圖。在地面平臺(tái)上,段洪濤等利用地物光譜儀ASD對(duì)長(zhǎng)春市南湖水質(zhì)參數(shù)進(jìn)行了研究分析,分別構(gòu)建了葉綠素a、總磷等水質(zhì)參數(shù)的單波段監(jiān)測(cè)模型;吳廷寬等利用地物光譜儀對(duì)貴州市百花湖富營(yíng)養(yǎng)進(jìn)行評(píng)價(jià),得出水質(zhì)參數(shù)Chl-a、TP、TN、SD、CODMn的敏感波段分別為699nm、823nm、399 nm 、563nm、504nm,利用水質(zhì)參數(shù)敏感波段對(duì)湖泊水質(zhì)參數(shù)進(jìn)行估測(cè)的效果較為理想。這些研究表明,將衛(wèi)星、機(jī)載、近地面遙感技術(shù)應(yīng)用于水質(zhì)監(jiān)測(cè),其方法已經(jīng)較為成熟,也可取得較好的成果。然而受衛(wèi)星遙感影像空間分辨率、時(shí)間分辨率等限制,衛(wèi)星遙感技術(shù)目前多應(yīng)用于大面積水域的水質(zhì)監(jiān)測(cè);另外機(jī)載遙感技術(shù)受航空管制等因素的影響,不能及時(shí)的檢測(cè)水質(zhì)污染狀況,因此對(duì)于小微水域中水質(zhì)參數(shù)的空間分布情況,需要采用新的方法予以解決。
近年來(lái)隨著無(wú)人機(jī)發(fā)展的日漸成熟,無(wú)人機(jī)搭載高光譜相機(jī)的應(yīng)用領(lǐng)域不斷拓展,例如,萬(wàn)余慶等利用無(wú)人機(jī)高光譜對(duì)新疆生產(chǎn)建設(shè)兵團(tuán)gong青團(tuán)團(tuán)場(chǎng)的土壤氮磷鉀進(jìn)行了監(jiān)測(cè)研究,研究結(jié)果為團(tuán)場(chǎng)的大范圍施肥提供決策依據(jù);Du等利用無(wú)人機(jī)高光譜獲取沈陽(yáng)農(nóng)業(yè)大學(xué)水稻田的高光譜影像,進(jìn)而分析水稻的葉片氮含量,所構(gòu)建的模型精度為R2 = 0.85,研究結(jié)果為無(wú)人機(jī)高光譜遙感反演水稻氮水平提供了理論依據(jù);Sankey等利用無(wú)人機(jī)高光譜和雷達(dá)技術(shù)進(jìn)行森林的樹高樹冠覆蓋度研究;Ishida等利用無(wú)人機(jī)高光譜技術(shù)對(duì)植物區(qū)域的不同地物進(jìn)行分類研究,總體分類精度為94.5%。然而目前針對(duì)無(wú)人機(jī)高光譜技術(shù)對(duì)水體(如湖泊、河流等)的水質(zhì)研究甚少。
基于此,本文以云南玉溪市星云湖和深圳市茅洲河為研究對(duì)像,通過(guò)無(wú)人機(jī)搭載高光譜傳感器獲取其高光譜圖像反射率數(shù)據(jù),構(gòu)建總氮(TN)、總磷(TP)、葉綠素 (CHL-a)、懸浮物 (TSS)、和濁度(TUB)的監(jiān)測(cè)模型并研究其濃度空間分布,以期為不同水體的水質(zhì)監(jiān)測(cè)提供新的技術(shù)手段。
2 材料與方法
2.1 研究區(qū)域概況
星云湖位于中國(guó)云南省玉溪市江川縣縣城以北2公里,距縣城約一公里。地理位置為東經(jīng) 102°45′ ,至102°48′,北緯24°17′至 24°23′,南與杞麓湖相鄰,北與撫仙湖相通,屬珠江流域南盤江水系的源頭湖泊,為滇中高原陷落性淺水湖,是撫仙湖上游的湖泊。星云湖湖灣多,灣弧多,魚草繁茂,岸邊柳樹蘆草成行,周圍多農(nóng)田,湖底平緩多泥,有機(jī)物質(zhì)淤積較厚,湖內(nèi)水草繁茂,浮游生物和底棲生物也較豐富,屬高原斷陷湖泊,是一座富營(yíng)養(yǎng)化湖泊,為云南九大高原湖泊之一,近年來(lái)星云湖被列為劣V類水質(zhì)。
全長(zhǎng)31公里的茅洲河是深圳第一大河,也是它流經(jīng)深圳、東莞兩市,兩岸一級(jí)支流27條,每一條都在經(jīng)濟(jì)騰飛進(jìn)程中被嚴(yán)重污染,兩岸工廠企業(yè)眾多、水污染問(wèn)題最為棘手,是深圳市污染河流中具有代表性的一條。污染直接危害了流域內(nèi)人民的正常生活和身體健康,不能滿足人民對(duì)美好生活環(huán)境的要求對(duì)旅游事業(yè)也帶來(lái)了一定影響。
2.2 采樣點(diǎn)的分布
本文以星云湖的進(jìn)水口和茅洲河的第三支流作為研究區(qū),在2018年7月18日和2019年7月26日分別對(duì)茅洲河的第三支流和星云湖的幾個(gè)進(jìn)水口進(jìn)行了野外試驗(yàn),在星云湖和茅洲河分別采集了5和15個(gè)采樣點(diǎn)的水質(zhì)參數(shù)。試驗(yàn)采樣點(diǎn)分布如圖1所示。
圖1 星云湖(左)和茅洲河(右)的采樣點(diǎn)分布圖
2.3 無(wú)人機(jī)高光譜影像獲取
采用大疆無(wú)人機(jī)M600 Pro,在無(wú)人機(jī)平臺(tái)上搭載由江蘇雙利合譜科技有限公司自主研發(fā)的高光譜成像儀GaiaSky-mini 2獲取星云湖和茅洲河的高光譜影像。無(wú)人機(jī)飛行高度為100米,采用的是2*4 binning方式獲取高光譜影像(2是空間維的,8是光譜維)(Binning是一種圖像讀出模式,將相鄰的像元中感應(yīng)的電荷被加在一起,以一個(gè)像素的模式讀出),高光譜影像的空間分辨率約為4cm。其中無(wú)人機(jī)高光譜影像的預(yù)處理主要包括鏡像變換、黑白幀校正、場(chǎng)地校正等。
2.4 水質(zhì)參數(shù)分析
每個(gè)采樣點(diǎn)取表層0.5m處的水樣進(jìn)行實(shí)驗(yàn)室分析,分析的參數(shù)包括總氮(TN)、總磷(TP)、懸浮物 (TSS)、濁度(TUB)、葉綠素 (CHL-a)。其中TN采用紫外可見分光光度計(jì)UV754N測(cè)定;TP、TUB和CHL-a采用可見分光光度計(jì)721型測(cè)定;TSS采用萬(wàn)分之一分析天平AL204測(cè)定。星云湖和茅洲河采樣點(diǎn)的水質(zhì)參數(shù)統(tǒng)計(jì)表如表1所示,主要包括每個(gè)水質(zhì)參數(shù)的最小值、最大值、均值、方差和變異系數(shù)。
表1 湖泊、河流水質(zhì)參數(shù)的統(tǒng)計(jì)參數(shù)
2.5 水質(zhì)參數(shù)模型構(gòu)建流程
本研究以云南玉溪市星云湖和深圳市茅洲河為研究區(qū),利用無(wú)人機(jī)高光譜技術(shù)構(gòu)建水質(zhì)參數(shù)如總氮、總磷、懸浮物、濁度、葉綠素a的監(jiān)測(cè)模型,將監(jiān)測(cè)模型反演到無(wú)人機(jī)高光譜影像上制作總氮、總磷、懸浮物、濁度、葉綠素a的空間分布圖。具體計(jì)算路線如圖2所示。
圖2 無(wú)人機(jī)高光譜水質(zhì)監(jiān)測(cè)模型的構(gòu)建流程
2.6 模型評(píng)價(jià)標(biāo)準(zhǔn)
本研究中星云湖和茅洲河分別有5和15個(gè)采樣點(diǎn),采樣點(diǎn)按3:2的比例運(yùn)用含量梯度法[21]選出建模集和檢驗(yàn)集。水質(zhì)參數(shù)監(jiān)測(cè)模型運(yùn)用決定系數(shù)R2、均方根誤差(Root Mean Square Error,RMSE)、預(yù)測(cè)與偏差的比率(Ratio of Prediction to Deviation,RPD)進(jìn)行精度評(píng)價(jià),其中R2越大,RMSE和RPD越小,模型的準(zhǔn)確性越高。當(dāng)RPD> 2.0的值表示穩(wěn)定且準(zhǔn)確的預(yù)測(cè)模型,RPD值介于1.4和2.0之間,表明可以模型穩(wěn)定性一般,預(yù)測(cè)能力不穩(wěn)定,RPD <1.4時(shí)表明模型預(yù)測(cè)能力差。
3 結(jié)果與分析
3.1 采樣點(diǎn)光譜分析
圖3為星云湖和茅洲河共20個(gè)采樣點(diǎn)的光譜反射率曲線,其中星云湖的5個(gè)采樣點(diǎn)簡(jiǎn)稱湖+數(shù)字,茅洲河的15個(gè)采樣點(diǎn)簡(jiǎn)稱河+數(shù)字。從圖可以看出水體的光譜特征變化:在400-590nm范圍內(nèi),水體的光譜反射率呈上升趨勢(shì),在570-590nm附近形成一個(gè)反射峰,是由葉綠素和胡蘿卜素吸收較弱以及水中藻類和懸浮物的散射作用形成的;在590-680nm范圍內(nèi),水體的光譜反射率曲線呈下降趨勢(shì),在670-680nm范圍內(nèi)形成一個(gè)峰谷,這是由于葉綠素a的強(qiáng)吸收引起的;在690-710nm范圍內(nèi)形成的陡峰可作為水體有無(wú)葉綠素的重要依據(jù),由于浮游植物色素的熒光效應(yīng),使得水和葉綠素 a的吸收系數(shù)之和在此波長(zhǎng)處達(dá)到最小值;在790-810nm范圍內(nèi)形成的峰值是由于水中懸浮物的散射作用引起的。綜合分析星云湖和茅洲河采樣點(diǎn)的光譜曲線可知,不同區(qū)域、不同水質(zhì)的光譜曲線變化趨勢(shì)總體一致,是不同采樣點(diǎn)由于所含的水質(zhì)參數(shù)含量不同,其峰谷值及曲線高低變換緩慢不同。
圖3 星云湖和茅洲河采樣點(diǎn)的光譜反射率
將星云湖和茅洲河采樣點(diǎn)的水質(zhì)參數(shù)(如總氮、總磷、懸浮物、濁度和葉綠素a)分別與其對(duì)應(yīng)的光譜反射率值進(jìn)行相關(guān)性分析,得到如圖4所示的相關(guān)性曲線。從圖4可知,在400-1000nm光譜范圍內(nèi),濁度與各波段的反射率始終呈負(fù)相關(guān)關(guān)系,且相關(guān)系數(shù)并不高,相關(guān)系數(shù)絕對(duì)值在0-0.2之間;總磷與各波段的反射率呈正負(fù)相關(guān)性,相關(guān)系數(shù)絕對(duì)值最高的在660-690nm之間;總氮與各波段的反射率在400-530nm和540-695nm處呈負(fù)相關(guān)關(guān)系,在530-540和695-1000nm處呈正相關(guān),相關(guān)系數(shù)在490nm和690nm附近有兩個(gè)峰值;懸浮物和葉綠素a與各波段反射率相關(guān)性變化趨勢(shì)一致,在400-690nm范圍內(nèi)呈正負(fù)相關(guān)性,在690-1000nm范圍內(nèi)呈正相關(guān)性,相關(guān)系數(shù)在490nm和690nm附近有兩個(gè)峰值,在690-1000nm范圍內(nèi)保持較高的相關(guān)性。
圖4 星云湖、茅洲河的水質(zhì)參數(shù)與反射率的相關(guān)系數(shù)曲線
3.2 水質(zhì)參數(shù)的監(jiān)測(cè)模型
根據(jù)前人的研究可知,利用單波段監(jiān)測(cè)水質(zhì)的精度不如雙波段的監(jiān)測(cè)精度高;利用復(fù)雜的化學(xué)計(jì)量學(xué)分析法,如偏最小二乘法、人工神經(jīng)網(wǎng)絡(luò)、支持向量機(jī)等,與雙波段監(jiān)測(cè)模型相比雖然從監(jiān)測(cè)精度上有所提高,但運(yùn)用的波段數(shù)多,且運(yùn)行時(shí)間較長(zhǎng),在實(shí)際應(yīng)用過(guò)程中不適合實(shí)時(shí)在線監(jiān)測(cè)水質(zhì)參數(shù)。然而利用雙波段組合因子不僅可以突出水質(zhì)參數(shù)的光譜特征,使得非特征波段和特征波段不重合的其他水質(zhì)參數(shù)的交叉影響所造成的誤差平均化和隨機(jī)化。同時(shí),相除因子和相差因子都是突出水質(zhì)參數(shù)的光譜特征波段的有效運(yùn)算方法。本文根據(jù)雙波段組合,構(gòu)建歸一化指數(shù)、比值指數(shù)、差值指數(shù),尋找最佳的雙波段組合構(gòu)建監(jiān)測(cè)模型預(yù)測(cè)水質(zhì)參數(shù)。
將波長(zhǎng)從400-1000nm的所有波段反射率構(gòu)建歸一化指數(shù)、比值指數(shù)、差值指數(shù)分別與各水質(zhì)參數(shù)進(jìn)行相關(guān)分析,得到水質(zhì)參數(shù)與各波段比值的相關(guān)系數(shù)分布圖。以水質(zhì)參數(shù)總氮為例,圖5為水質(zhì)參數(shù)總氮與歸一化指數(shù)、比值指數(shù)、差值指數(shù)任意兩波段組合的相關(guān)系數(shù)分布圖。
圖5 總氮與雙波段反射率指數(shù)相關(guān)系數(shù)分布圖
圖6 總氮模型的建立及檢驗(yàn)
圖7 總磷模型的建立及檢驗(yàn)
圖8 葉綠素a模型的建立及檢驗(yàn)
圖9 懸浮物模型的建立及檢驗(yàn)
圖10 濁度模型的建立及檢驗(yàn)
圖11 河湖水質(zhì)參數(shù)的反演
4 結(jié)論與討論
目前,衛(wèi)星遙感技術(shù)對(duì)水質(zhì)參數(shù)的監(jiān)測(cè)研究已基本成熟,但受衛(wèi)星遙感影像空間分辨率、時(shí)間分辨率等因素的影響,衛(wèi)星遙感無(wú)法針對(duì)小范圍城市河流、湖泊的進(jìn)出排水口進(jìn)行實(shí)時(shí)監(jiān)測(cè)。本研究利用無(wú)人機(jī)高光譜技術(shù),根據(jù)已建立的指數(shù)模型,在水面上空獲取水體的高光譜影像,通過(guò)在線反演可實(shí)時(shí)觀察水環(huán)境的水質(zhì)參數(shù)總氮、總磷、葉綠素a、懸浮物、濁度的變化,為城市河流的水質(zhì)監(jiān)測(cè)提供了全新的數(shù)據(jù)來(lái)源和技術(shù)手段,同時(shí)也為湖泊、河流的水環(huán)境保護(hù)及治理提供了依據(jù)。